Формула площади правильной пирамиды. Правильная пирамида. Определение. Правильная усеченная пирамида

Пирамида – это многогранная фигура, в основании которой лежит многоугольник, а остальные грани представлены треугольниками с общей вершиной.

Если в основании лежит квадрат, то пирамиду называется четырехугольной , если треугольник – то треугольной . Высота пирамиды проводится из ее вершины перпендикулярно основанию. Также для расчета площади используется апофема – высота боковой грани, опущенная из ее вершины.
Формула площади боковой поверхности пирамиды представляет собой сумму площадей ее боковых граней, которые равны между собой. Однако этот способ расчета применяется очень редко. В основном площадь пирамиды рассчитывается через периметр основания и апофему:

Рассмотрим пример расчета площади боковой поверхности пирамиды.

Пусть дана пирамида с основанием ABCDE и вершиной F. AB=BC=CD=DE=EA=3 см. Апофема a = 5 см. Найти площадь боковой поверхности пирамиды.
Найдем периметр. Так как все грани основания равны, то периметр пятиугольника будет равен:
Теперь можно найти боковую площадь пирамиды:

Площадь правильной треугольной пирамиды


Правильная треугольная пирамида состоит из основания, в котором лежит правильный треугольник и трех боковых граней, которые равны по площади.
Формула площади боковой поверхности правильной треугольной пирамиды может быть рассчитана разными способами. Можно применить обычную формулу расчета через периметр и апофему, а можно найти площадь одной грани и умножить ее на три. Так как грань пирамиды – это треугольник, то применим формулу площади треугольника. Для нее потребуется апофема и длина основания. Рассмотрим пример расчета площади боковой поверхности правильной треугольной пирамиды.

Дана пирамида с апофемой a = 4 см и гранью основания b = 2 см. Найдите площадь боковой поверхности пирамиды.
Для начала находим площадь одной из боковых граней. В данном случае она будет:
Подставляем значения в формулу:
Так как в правильной пирамиде все боковые стороны одинаковы, то площадь боковой поверхности пирамиды будет равна сумме площадей трех граней. Соответственно:

Площадь усеченной пирамиды


Усеченной пирамидой называется многогранник, который образовывается пирамидой и ее сечением, параллельным основанию.
Формула площади боковой поверхности усеченной пирамиды очень проста. Площадь равняется произведению половины суммы периметров оснований на апофему:

Рассмотрим пример расчета площади боковой поверхности усеченной пирамиды.

Дана правильная четырехугольная пирамида. Длины основания равны b = 5 см, c = 3 см. Апофема a = 4 см. Найдите площадь боковой поверхности фигуры.
Для начала найдем периметр оснований. В большем основании он будет равен:
В меньшем основании:
Посчитаем площадь:

Площадь боковой поверхности правильной пирамиды равна произведению её апофемы на половину периметра основания.

Что касается площади полной поверхности, то просто к боковой прибавляем площадь основания.

Боковая поверхность правильной пирамиды равна произведению полупериметра основания на апофему.

Доказательство:

Если сторона основания а, число сторон n, то боковая поверхность пирамиды равна:

a l n/2 =a n l/2=pl/2

где l - апофема, а p - периметр основания пирамиды. Теорема доказана.

Эта формула читается так:

Площадь боковой поверхности правильной пирамиды равна половине произведения периметра основания на апофему пирамиды.

Площадь полной поверхности пирамиды вычисляется по формуле:

S полн = S бок + S осн

Если пирамида неправильная, то ее боковая поверхность будет равна сумме площадей ее боковых граней.

Объем пирамиды

Объем пирамиды равен одной трети произведения площади основания на высоту.

Доказательство. Будем исходить из треугольной призмы. Проведем плоскость через вершину A" верхнего основания призмы и противолежащее ребро ВС нижнего основания. Эта плоскость отсечет от призмы треугольную пирамиду A"АВС. Оставшуюся часть призмы разложим на жва тела, проведя плоскость через диагонали A"С и B"C боковых граней. Полученные два тела также являются пирамидами. Считая треугольник A"B"C" основанием одной из них, а С её вершиной, увидим, что её основание и высота такие же, как и у первой отсеченной нами пирамиды, поэтому пирамиды A"АВС и CA"B"C" равновелики. Кроме того, обе новые пирамиды CA"B"C" и A"B"ВС также равновелики - это станет ясным, если примем за их основания треугольники ВСB" и B"CC". Пирамиды CA"B"C" и A"B"ВС имеют общую вершину A", а их основания расположены в одной плоскости и равны, следовательно, пирамиды равновелики. Итак, призма разложена на три равновеликие между собой пирамиды; объем каждой из них равен одной трети объема призмы. Так как форма основания несущественна, то, вообще, объем n-угольной пирамиды равен одной трети объема призмы с той же высотой и тем же (или равновеликим) основанием. Вспоминая формулу, выражающую объем призмы, V=Sh, получим окончательный результат: V=1/3Sh

Какую фигуру мы называем пирамидой? Во-первых, это многогранник. Во-вторых, в основании этого многогранника расположен произвольный многоугольник, а стороны пирамиды (боковые грани) обязательно имеют форму треугольников, сходящихся в одной общей вершине. Вот теперь, разобравшись с термином, выясним, как найти площадь поверхности пирамиды.

Понятно, что площадь поверхности такого геометрического тела составится из суммы площадей основания и всей его боковой поверхности.

Вычисление площади основания пирамиды

Выбор расчетной формулы зависит от формы лежащего в основании нашей пирамиды многоугольника. Он может быть правильным, то есть со сторонами одинаковой длины, или неправильным. Рассмотрим оба варианта.

В основании – правильный многоугольник

Из школьного курса известно:

  • площадь квадрата будет равна длине его стороны, возведенной в квадрат;
  • площадь равностороннего треугольника равна квадрату его стороны, деленному на 4 и умноженному на квадратный корень из трех.

Но существует и общая формула, для расчета площади любого правильного многоугольника (Sn): надо умножить значение периметра этого многоугольника (Р) на радиус вписанной в него окружности (r), а затем разделить полученный результат на два: Sn=1/2P*r.

В основании – неправильный многоугольник

Схема нахождения его площади заключается в том, чтобы сначала разбить весь многоугольник на треугольники, вычислить площадь каждого из них по формуле: 1/2a*h (где а – основание треугольника, h – опущенная на это основание высота), сложить все результаты.

Площадь боковой поверхности пирамиды

Теперь рассчитаем площадь боковой поверхности пирамиды, т.е. сумму площадей всех ее боковых сторон. Здесь также возможны 2 варианта.

  1. Пусть у нас имеется произвольная пирамида, т.е. такая, в основании которой – неправильный многоугольник. Тогда следует вычислить отдельно площадь каждой грани и сложить результаты. Так как боковыми сторонами пирамиды по определению могут быть только треугольники, то расчет идет по упомянутой выше формуле: S=1/2a*h.
  2. Пусть наша пирамида – правильная, т.е. в ее основании лежит правильный многоугольник, и проекция вершины пирамиды оказывается в его центре. Тогда для вычисления площади боковой поверхности (Sб) достаточно найти половину произведения периметра многоугольника-основания (Р) на высоту (h) боковой стороны (одинаковую для всех граней): Sб=1/2 Р*h. Периметр многоугольника определяется сложением длин всех его сторон.

Полная площадь поверхности правильной пирамиды найдется суммированием площади ее основания с площадью всей боковой поверхности.

Примеры

Для примера вычислим алгебраически площади поверхности нескольких пирамид.

Площадь поверхности треугольной пирамиды

В основании такой пирамиды – треугольник. По формуле Sо=1/2a*h находим площадь основания. Эту же формулу применяем для нахождения площади каждой грани пирамиды, также имеющей треугольную форму, и получаем 3 площади: S1, S2 и S3. Площадь боковой поверхности пирамиды является суммой всех площадей: Sб= S1+ S2+ S3. Сложив площади боковых сторон и основания, получим полную площадь поверхности искомой пирамиды: Sп= Sо+ Sб.

Площадь поверхности четырехугольной пирамиды

Площадь боковой поверхности - это сумма 4-ех слагаемых: Sб= S1+ S2+ S3+ S4, каждое из которых вычислено по формуле площади треугольника. А площадь основания придется искать, в зависимости от формы четырехугольника - правильного или неправильного. Площадь полной поверхности пирамиды снова получится путем сложения площади основания и полной площади поверхности заданной пирамиды.

При подготовке к ЕГЭ по математике учащимся приходится систематизировать знания по алгебре и геометрии. Хочется объединить все известные сведения, например, о том, как вычислить площадь пирамиды. Причем начиная от основания и боковых граней до площади всей поверхности. Если с боковыми гранями ситуация ясна, так как они являются треугольниками, то основание всегда разное.

Как быть при нахождении площади основания пирамиды?

Оно может быть совершенно любой фигурой: от произвольного треугольника до n-угольника. И это основание, кроме различия в количестве углов, может являться правильной фигурой или неправильной. В интересующих школьников заданиях по ЕГЭ встречаются только задания с правильными фигурами в основании. Поэтому речь будет идти только о них.

Правильный треугольник

То есть равносторонний. Тот, у которого все стороны равны и обозначены буквой «а». В этом случае площадь основания пирамиды вычисляется по формуле:

S = (а 2 * √3) / 4.

Квадрат

Формула для вычисления его площади самая простая, здесь «а» - снова сторона:

Произвольный правильный n-угольник

У стороны многоугольника то же обозначение. Для количества углов используется латинская буква n.

S = (n * а 2) / (4 * tg (180º/n)).

Как поступить при вычислении площади боковой и полной поверхности?

Поскольку в основании лежит правильная фигура, то все грани пирамиды оказываются равными. Причем каждая из них является равнобедренным треугольником, поскольку боковые ребра равны. Тогда для того, чтобы вычислить боковую площадь пирамиды, потребуется формула, состоящая из суммы одинаковых одночленов. Число слагаемых определяется количеством сторон основания.

Площадь равнобедренного треугольника вычисляется по формуле, в которой половина произведения основания умножается на высоту. Эта высота в пирамиде называется апофемой. Ее обозначение - «А». Общая формула для площади боковой поверхности выглядит так:

S = ½ Р*А, где Р — периметр основания пирамиды.

Бывают ситуации, когда не известны стороны основания, но даны боковые ребра (в) и плоский угол при ее вершине (α). Тогда полагается использовать такую формулу, чтобы вычислить боковую площадь пирамиды:

S = n/2 * в 2 sin α.

Задача № 1

Условие. Найти общую площадь пирамиды, если в его основании лежит со стороной 4 см, а апофема имеет значение √3 см.

Решение. Его начинать нужно с расчета периметра основания. Поскольку это правильный треугольник, то Р = 3*4 = 12 см. Поскольку апофема известна, то можно сразу вычислить площадь всей боковой поверхности: ½*12*√3 = 6√3 см 2 .

Для треугольника в основании получится такое значение площади: (4 2 *√3) / 4 = 4√3 см 2 .

Для определения всей площади потребуется сложить два получившихся значения: 6√3 + 4√3 = 10√3 см 2 .

Ответ. 10√3 см 2 .

Задача № 2

Условие . Имеется правильная четырехугольная пирамида. Длина стороны основания равна 7 мм, боковое ребро — 16 мм. Необходимо узнать площадь ее поверхности.

Решение. Поскольку многогранник — четырехугольный и правильный, то в его основании лежит квадрат. Узнав площади основания и боковых граней, удастся сосчитать площадь пирамиды. Формула для квадрата дана выше. А у боковых граней известны все стороны треугольника. Поэтому можно использовать формулу Герона для вычисления их площадей.

Первые расчеты просты и приводят к такому числу: 49 мм 2 . Для второго значения потребуется вычислить полупериметр: (7 + 16*2):2 = 19,5 мм. Теперь можно вычислять площадь равнобедренного треугольника: √(19,5*(19,5-7)*(19,5-16) 2) = √2985,9375 = 54,644 мм 2 . Таких треугольников всего четыре, поэтому при подсчете итогового числа потребуется его умножить на 4.

Получается: 49 + 4*54,644 = 267,576 мм 2 .

Ответ . Искомое значение 267,576 мм 2 .

Задача № 3

Условие . У правильной четырехугольной пирамиды необходимо вычислить площадь. В ней известна сторона квадрата — 6 см и высота — 4 см.

Решение. Проще всего воспользоваться формулой с произведением периметра и апофемы. Первое значение найти просто. Второе немного сложнее.

Придется вспомнить теорему Пифагора и рассмотреть Он образован высотой пирамиды и апофемой, которая является гипотенузой. Второй катет равен половине стороны квадрата, поскольку высота многогранника падает в его середину.

Искомая апофема (гипотенуза прямоугольного треугольника) равна √(3 2 + 4 2) = 5 (см).

Теперь можно вычислять искомую величину: ½*(4*6)*5+6 2 = 96 (см 2).

Ответ. 96 см 2 .

Задача № 4

Условие. Дана правильная Стороны ее основания равны 22 мм, боковые ребра — 61 мм. Чему равна площадь боковой поверхности этого многогранника?

Решение. Рассуждения в ней такие же, как были описаны в задаче №2. Только там была дана пирамида с квадратом в основании, а теперь это шестиугольник.

Первым делом вычисляется площадь основания по указанной выше формуле: (6*22 2) / (4*tg (180º/6)) = 726/(tg30º) = 726√3 см 2 .

Теперь необходимо узнать полупериметр равнобедренного треугольника, который является боковой гранью. (22+61*2):2 = 72 см. Осталось по формуле Герона сосчитать площадь каждого такого треугольника, а потом умножить ее на шесть и сложить с той, что получилась для основания.

Расчеты по формуле Герона: √(72*(72-22)*(72-61) 2)=√435600=660 см 2 . Вычисления, которые дадут площадь боковой поверхности: 660*6 = 3960 см 2 . Осталось их сложить, чтобы узнать всю поверхность: 5217,47≈5217 см 2 .

Ответ. Основания - 726√3 см 2 , боковой поверхности - 3960 см 2 , вся площадь - 5217 см 2 .

Перед изучением вопросов о данной геометрической фигуре и её свойствах, следует разобраться в некоторых терминах. Когда человек слышит о пирамиде, ему представляются большущие постройки в Египте. Так выглядят самые простые из них. Но они бывают разных видов и форм, а значит и формула вычисления для геометрических фигур будет разной.

Виды фигуры

Пирамида – геометрическая фигура , обозначающая и представляющая собой несколько граней. По сути – это тот же многогранник, в основании которого лежит многоугольник, а по бокам расположены треугольники, соединяющиеся в одной точке – вершине. Фигура бывает двух основных видов:

  • правильная;
  • усечённая.

В первом случае, в основании лежит правильный многоугольник. Тут все боковые поверхности равны между собой и сама фигура порадует глаз перфекциониста.

Во втором случае, оснований два - большое в самом низу и малое между вершиной, повторяющее форму основного. Иными словами – усечённая пирамида представляет собой многогранник с сечением, образованным параллельно основанию.

Термины и обозначения

Основные термины:

  • Правильный (равносторонний) треугольник – фигура с тремя одинаковыми углами и равными сторонами. В этом случае все углы имеют 60 градусов. Фигура является простейшей из правильных многогранников. Если эта фигура лежит в основании, то такой многогранник будет называться правильной треугольной. Если в основании лежит квадрат, пирамида будет называться правильной четырёхугольной пирамидой.
  • Вершина – самая верхняя точка, где сходятся грани. Высота вершины образуется прямой линией, исходящей от вершины к основанию пирамиды.
  • Грань – одна из плоскостей многоугольника. Она может быть в виде треугольника в случае с треугольной пирамидой либо в виде трапеции для усечённой пирамиды.
  • Сечение – плоская фигура, образующаяся в результате рассечения. Не стоит путать с разрезом, так как разрез показывает и то, что находится за сечением.
  • Апофема – отрезок, проведённый из вершины пирамиды к её основанию. Он также является высотой той грани, где находится вторая точка высоты. Данное определение справедливо лишь по отношению к правильному многограннику. К примеру – если это не усечённая пирамида, то грань будет представлять собой треугольник. В данном случае высота этого треугольника и станет апофемой.

Формулы площади

Находить площадь боковой поверхности пирамиды любого типа можно несколькими способами. Если фигура не симметричная и представляет собой многоугольник с разными сторонами, то в данном случае легче вычислить общую площадь поверхности через совокупность всех поверхностей. Иными словами – надо посчитать площадь каждой грани и сложить их вместе.

В зависимости от того, какие параметры известны, могут потребоваться формулы вычисления квадрата, трапеции, произвольного четырёхугольника и т.д. Сами формулы в разных случаях тоже будут иметь отличия.

В случае с правильной фигурой находить площадь намного проще. Достаточно знать всего несколько ключевых параметров. В большинстве случаев требуются вычисления именно для таких фигур. Поэтому далее будут приведены соответствующие формулы. В противном случае пришлось бы расписать всё на несколько страниц, что только запутает и собьёт с толку.

Основная формула для вычисления площади боковой поверхности правильной пирамиды будет иметь следующий вид:

S=½ Pa (P – периметр основания, а – апофема)

Рассмотрим один из примеров. Многогранник имеет основание с отрезками A1, А2, А3, А4, А5, и все они равны 10 см. Апофема пусть будет равна 5 см. Для начала надо найти периметр. Так как все пять граней основания одинаковые, можно находить так: Р=5*10=50 см. Далее применяем основную формулу: S =½*50*5=125 см в квадрате.

Площадь боковой поверхности правильной треугольной пирамиды вычислить легче всего. Формула имеет следующий вид:

S =½* ab *3, где а – апофема, b – грань основания. Множитель тройки здесь означает количество граней основания, а первая часть – площадь боковой поверхности. Рассмотрим пример. Дана фигура с апофемой 5 см и гранью основания 8 см. Вычисляем: S =1/2*5*8*3=60 см в квадрате.

Площадь боковой поверхности усечённой пирамиды вычислять немного сложнее. Формула выглядит так: S =1/2*(p _01+ p _02)*a , где р_01 и р_02 являются периметрами оснований, а – апофема. Рассмотрим пример. Допустим, для четырёхугольной фигуры даны размеры сторон оснований 3 и 6 см, апофема равна 4 см.

Тут для начала следует найти периметры оснований: р_01 =3*4=12 см; р_02=6*4=24 см. Осталось подставить значения в основную формулу и получим: S =1/2*(12+24)*4=0,5*36*4=72 см в квадрате.

Таким образом, можно найти площадь боковой поверхности правильной пирамиды любой сложности. Следует быть внимательным и не путать эти вычисления с полной площадью всего многогранника. А если это всё же понадобится сделать – достаточно вычислить площадь самого большого основания многогранника и прибавить её к площади боковой поверхности многогранника.

Видео

Закрепить информацию о том, как найти площадь боковой поверхности разных пирамид, вам поможет это видео.